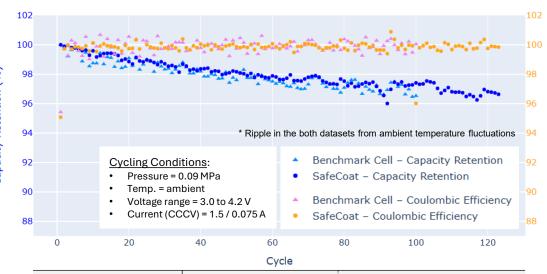
SafeCoat[™] Direct Deposition Separator

Cycling Comparison (1.5 Ah, 1C)

Purpose:

To validate the performance of SafeCoat DDS in a head-to-head comparison with ceramic-coated separator using the same cell chemistry.


- Both Cells prepared from research-grade electrodes, rated for 500 cycles at 0.2C
- These electrodes are not optimized for high cycle life at 1C
- System is design for direct comparison of separator performance with same electrodes

Conclusion:

SafeCoat Cell matches the capacity retention performance of the cell with ceramic-coated separator at 1C, 1.5 Ah

Notes:

- Benchmark cell uses the same electrodes and packaging materials as our pilot cells, providing a directly comparable reference.
- SafeCoat cells were manually assembled for initial validation, yet showed performance comparable to automated commercial cells.

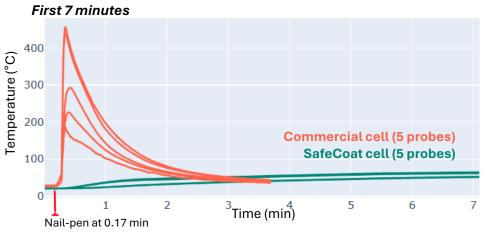
<u>Materials ↓</u>	SafeCoat Cell	Benchmark Cell
Separator	15 µm SafeCoat	16µm PE + 2µm Alumina
Cathode	NCM 523, 1.7 mAh/cm ² ,	NCM 523, 1.7mAh/cm²,
	41x55* mm, 20 electrodes	43x56* mm, 20 electrodes
Anode	Graphite, 1.9 mAh/cm², 45x58 mm, 21 electrodes	
Electrolyte	1M LiPF ₆ in 1:1:1 EC:DMC:DEC solvent	
Discharge Capacity* (Ah) ↓	SafeCoat Cell	Benchmark Cell
Formation discharge (C/10)	1.511	1.568
First cycle (1C)	1.418	1.483

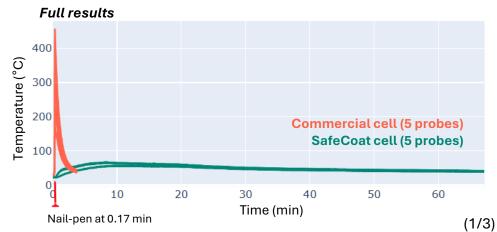
^{*} SafeCoat Cell: manual stacking and welding requires smaller cathodes.

SafeCoat[™] Direct Deposition Separator

Nail Penetration Results (5 Ah) - Temperature

Purpose:

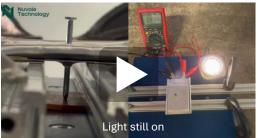

To demonstrate the **excellent thermal stability** of a SafeCoat-enabled cell in a comparison with a leading consumer pouch cell.


Separator Type →	SafeCoat DDS	Benchmark Cell
Peak Temperature	66 °C	456 °C
Mass loss	0.3%	21.5%

SAE J2464 protocol was used with identical nails. Third-party report is available.

<u>Materials</u> ↓	SafeCoat	Benchmark Cell ¹
Separator	20 µm SafeCoat ²	12µm PE + 2µm Alumina
Cathode	NCM 523, 1.7 mAh/cm², 79x100 mm, 20 sheets	NCM
Anode	Graphite, 1.9 mAh/cm², 83x104 mm, 21 sheets	Graphite
Electrolyte	1M LiPF ₆ in 1:1:1 EC:DMC:DEC solvent	Commercial

^{1.} Benchmark cell reflects top-tier commercial design and performed well in testing.

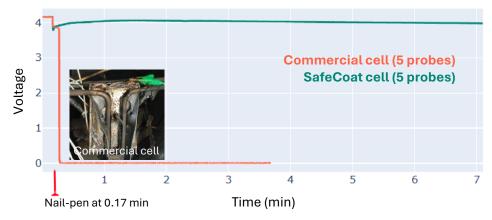


^{2.} SafeCoat cell showed minimal impact from thickness; confirmed in 15 µm in-house test (next page).

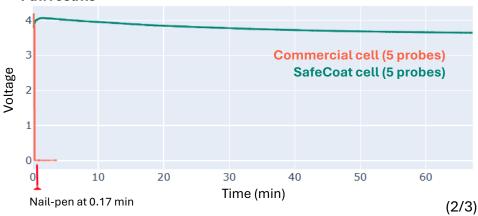
SafeCoat[™] Direct Deposition Separator

Nail Penetration Results (5 Ah) - Voltage

5 Ah 20 μm SafeCoat cell after 1 hr


1.5 Ah 15 µm SafeCoat cell test video

- 20 μm / 5 Ah SafeCoat cell endures 1-hour nail-penetration test at 100% SOC without thermal runaway or sudden discharge
- Nail short gradually discharges the cell from 4.16 V to 3.68 V over 1 hour without sharp voltage drop
- 15 μm / 1.5 Ah SafeCoat cell verified with 2-nail penetration test in-house (video link)


Conclusions:

SafeCoat Cell demonstrates outstanding thermal stability and prevents fire, mass loss and runaway heating. The cell remains effectively functional, apart from the short pathway provided by the nail.

First 7 minutes

Full results

